A Note on Absolute Central Automorphisms of Finite p-Groups

Rasoul Soleimani
Department of Mathematics, Payame Noor University, Tehran, Iran
E-mail: r_soleimani@pnu.ac.ir

Abstract

Let G be a finite group. The automorphism σ of a group G is said to be an absolute central automorphism, if for all $x \in G, x^{-1} x^{\sigma} \in$ $L(G)$, where $L(G)$ be the absolute centre of G. In this paper, we study some properties of absolute central automorphisms of a given finite p group.

Keywords: Absolute centre, Absolute central automorphisms, Finite p-groups.

2000 Mathematics subject classification: 20D45, 20D25, 20 D 15.

1. Introduction

Let G be a finite group and N a characteristic subgroup of G. Suppose σ is an automorphism of G. If $(N g)^{\sigma}=N g$ for all g in G or equivalently σ induces the identity automorphism on G / N, we shall say σ centralizes G / N. We let $\mathrm{Aut}^{N}(G)$ denote the group of all automorphisms of G centralizing G / N. Clearly $\sigma \in \operatorname{Aut}^{N}(G)$ if and only if $x^{-1} x^{\sigma} \in N$ for all $x \in G$. Now let M be a normal subgroup of G. Let us denote by $C_{\mathrm{Aut}^{N}(G)}(M)$ the group of all automorphisms of $\operatorname{Aut}^{N}(G)$ centralizing M. Various authors have studied the groups Aut ${ }^{Z}(G)$, the central automorphisms of G, where $Z=Z(G)$, Aut ${ }^{G^{\prime}}(G)$, the IA-automorphisms of G, where G^{\prime} stands for the commutator subgroup of G, and $\operatorname{Aut}^{\Phi}(G)$, where Φ denote the Frattini subgroup of G, the intersection of all maximal subgroups of G, see for example $[14,17,19,20]$. For any
element $g \in G$ and $\sigma \in \operatorname{Aut}(G)$, the element $[g, \sigma]=g^{-1} g^{\sigma}$ is called the autocommutator of g and σ. Also inductively, for all $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in \operatorname{Aut}(G)$, define $\left[g, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right]=\left[\left[g, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right], \sigma_{n}\right]$. Hegarty [7], generalized the concept of centre into absolute centre $L(G)$ of a group G as

$$
L(G)=\{g \in G \mid[g, \sigma]=1, \forall \sigma \in \operatorname{Aut}(G)\}
$$

One can easily check that the absolute centre is a characteristic subgroup contained in the centre of G. Also he introduced the concept of the absolute central automorphism. An automorphism σ of G is called an absolute central automorphism if σ centralizes $G / L(G)$. We denote the set of all absolute central automorphisms of G by Aut $^{L}(G)$. Singh and Gumber [18], Kaboutari Farimani [9], also Shabani-Attar [17] have given some necessary and sufficient conditions for a finite non-abelian p-group such that all absolute central automorphisms are inner. In this paper, we will characterize the finite non-abelian p-groups G such that $\operatorname{Aut}^{L}(G)=\operatorname{Aut}^{G^{\prime}}(G)$. Then, we determine the finite non-abelian p-groups G with cyclic Frattini subgroup for which Aut ${ }^{L}(G)=$ Aut $^{\Phi}(G)$. Finally, we classify all finite p-groups G of order $p^{n}(3 \leq n \leq 5)$, such that $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$.

Throughout this paper all groups are assumed to be finite and p always denotes a prime number. Most of our notation is standard, and can be found in [5], for example. In particular, a p-group G is said to be extraspecial if $G^{\prime}=Z(G)=\Phi(G)$ is of order p. Let $L_{1}(G)=L(G)$ and for $n \geq 2$, define $L_{n}(G)$ inductively as

$$
L_{n}(G)=\left\{g \in G \mid\left[g, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right]=1, \forall \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in \operatorname{Aut}(G)\right\}
$$

A group G is called autonilpotent of class at most n if $L_{n}(G)=G$, for some $n \in \mathbb{N}$. If σ is an automorphism of G and x is an element of G, we write x^{σ} for the image of x under σ and $o(x)$ for the order of x. For a finite $\operatorname{group} G, \exp (G)$, $d(G)$ and $\operatorname{cl}(G)$, denote the exponent of G, minimal number of generators of G and the nilpotency class of G, respectively. Recall that a group G is called a central product of its subgroups G_{1}, \ldots, G_{n} if $G=G_{1} \cdots G_{n}$ and $\left[G_{i}, G_{j}\right]=1$, for all $1 \leq i<j \leq n$. In this situation, we shall write $G=G_{1} * \cdots * G_{n}$. For $s \geq 1$, we use the notation $G^{* s}$ for the iterated central product defined by $G^{* s}=G * G^{*(s-1)}$ with $G^{* 1}=G$, where G is a finite p-group. We also make the convention $G^{* 0}=1$. Finally, we use X^{n} for the direct product of n-copies of a group X, C_{n} for the cyclic group of order n where $n \geq 1$, as usual, D_{8} for the dihedral group, Q_{8} for the quaternion group, of order 8 , respectively and $M_{p}(n, m)$ and $M_{p}(n, m, 1)$ for the minimal non-abelian p-groups of order p^{n+m} and p^{n+m+1} defined respectively by

$$
\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=1, a^{b}=a^{1+p^{n-1}}\right\rangle,
$$

where $n \geq 2, m \geq 1$ and

$$
\left\langle a, b, c \mid a^{p^{n}}=b^{p^{m}}=c^{p}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle
$$

where $n \geq m \geq 1$ and if $p=2$, then $m+n>2$.

2. Preliminary Results

In this section we give some results which will be used in the rest of the paper.

Let G and H be any two groups. We denote by $\operatorname{Hom}(G, H)$ the set of all homomorphisms from G into H. Clearly, if H is an abelian group, then $\operatorname{Hom}(G, H)$ forms an abelian group under the following operation $(f g)(x)=$ $f(x) g(x)$, for all $f, g \in \operatorname{Hom}(G, H)$ and $x \in G$.

The following lemma is a well-known.
Lemma 2.1. Let A, B and C be finite abelian groups. Then
(i) $\operatorname{Hom}(A \times B, C) \cong \operatorname{Hom}(A, C) \times \operatorname{Hom}(B, C)$;
(ii) $\operatorname{Hom}(A, B \times C) \cong \operatorname{Hom}(A, B) \times \operatorname{Hom}(A, C)$;
(iii) $\operatorname{Hom}\left(C_{m}, C_{n}\right) \cong C_{e}$, where e is the greatest common divisor of m and n.

We have the following theorem due to Müller [14].
Theorem 2.2. [14, Theorem] If G is a finite p-group which is neither elementary abelian nor extraspecial, then $A u t^{\Phi}(G) / \operatorname{Inn}(G)$ is a non-trivial normal p-subgroup of the group of outer automorphisms of G.

The following preliminary lemma is well-known result [19, Lemma 2.2].
Lemma 2.3. Let G be a group and M, N be normal subgroups of G with $N \leq M$ and $C_{N}(M) \leq Z(G)$. Then $C_{\mathrm{Aut}^{N}(G)}(M) \cong \operatorname{Hom}\left(G / M, C_{N}(M)\right)$.

Corollary 2.4. If G is a finite group, then

$$
C_{\mathrm{Aut}^{L}(G)}(Z(G)) \cong \operatorname{Hom}(G / Z(G), L(G))
$$

where $L=L(G)$.
Moghaddam and Safa [12], proved that for a finite group G,

$$
\operatorname{Aut}^{L}(G) \cong \operatorname{Hom}(G / L(G), L(G))
$$

The following theorem states a useful result for finite p-groups.
Theorem 2.5. Let G be a finite p-group different from C_{2}. Then $\operatorname{Aut}^{L}(G) \cong$ $\operatorname{Hom}(G, L(G))$.

Proof. Let $\theta \in \operatorname{Aut}^{L}(G)$. We define the map $f_{\theta}: G \rightarrow L(G)$ by $f_{\theta}(g)=g^{-1} g^{\theta}$. It is easy to see that f_{θ} is a homomorphism, and $\theta \mapsto f_{\theta}$ is an injective map from $\operatorname{Aut}^{L}(G)$ to $\operatorname{Hom}(G, L(G))$. Conversely, assume that $f \in \operatorname{Hom}(G, L(G))$. Then we define $\theta=\theta_{f}: G \rightarrow G$ by $g^{\theta}=g f(g)$. Since by [11, Corollary 3.7], $g^{-1} g^{\theta} \in L(G) \leq \Phi(G)$, for every element $g \in G$, we may write G as the product of the image of θ and the Frattini subgroup of G and so the image of θ must be G itself. Hence θ is an automorphism of G. Now $\theta=\theta_{f} \in \operatorname{Aut}^{L}(G)$ and $f_{\theta_{f}}=f$. Finally, suppose that $\alpha, \beta \in$ Aut $^{L}(G)$. Then for any $x \in G$,

$$
f_{\alpha \beta}(x)=x^{-1} x^{\alpha \beta}=x^{-1}\left(x x^{-1} x^{\alpha}\right)^{\beta}=x^{-1} x^{\beta} x^{-1} x^{\alpha}=x^{-1} x^{\alpha} x^{-1} x^{\beta}
$$

since $x^{-1} x^{\alpha} \in L(G)$. Thus $f_{\alpha \beta}(x)=f_{\alpha}(x) f_{\beta}(x)$ and so $\theta \mapsto f_{\theta}$ is a homomorphism, which completes the proof.

We next give a necessary and sufficient condition on a finite p-group G for the group Aut ${ }^{L}(G)$ to be elementary abelian.

Corollary 2.6. Let G be a finite p-group. Then $\operatorname{Aut}^{L}(G)$ is elementary abelian if and only if $\exp \left(G / G^{\prime}\right)=p$ or $\exp (L(G))=p$.

Proof. It is straightforward by Lemma 2.1 and Theorem 2.5.

3. Main Results

For a finite abelian p-group $G,|L(G)|=1,2$ by [11, Lemma 4.4] and so $\left|\operatorname{Aut}^{L}(G)\right|=1$ or $\operatorname{Aut}^{L}(G) \cong C_{2}^{d}$, with $d=d(G)$. Thus we may assume that G is a non-abelian p-group. In this section, first we characterize the finite non-abelian p-groups G such that Aut ${ }^{L}(G)=$ Aut $^{G^{\prime}}(G)$. Then, we determine the finite non-abelian p-groups G with cyclic Frattini subgroup for which $\operatorname{Aut}^{L}(G)=\operatorname{Aut}^{\Phi}(G)$.

In [9], Kaboutari Farimani proved the following two results giving some information of absolute central automorphisms of a finite p-group.

Lemma 3.1. Let G be a finite non-abelian p-group. Then $C_{\mathrm{Aut}^{L}(G)}(Z(G))=$ $\operatorname{Inn}(G)$ if and only if $G / L(G)$ is abelian and $L(G)$ is cyclic.
Theorem 3.2. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$ if and only if $G / L(G)$ is abelian, $L(G)$ is cyclic and $Z(G)=L(G) G^{p^{n}}$ where $\exp (L(G))=p^{n}$.

Note that the Theorem 3.2 yields the following corollary that is the Corollary 1 of Singh and Gumber [18].

Let G be a finite non-abelian p-group such that $G^{\prime} \leq L(G)$. Let $G / Z(G)=$ $C_{p^{\alpha_{1}}} \times C_{p^{\alpha_{2}}} \times \cdots \times C_{p^{\alpha_{r}}}$, where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{r} \geq 1$. Also let $G / L(G)=$ $C_{p^{\beta_{1}}} \times C_{p^{\beta_{2}}} \times \cdots \times C_{p^{\beta_{s}}}$, where $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{s} \geq 1$ and $L(G)=C_{p^{\gamma_{1}}} \times$
$C_{p^{\gamma_{2}}} \times \cdots \times C_{p^{\gamma_{t}}}$, where $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{t} \geq 1$. Since $G / Z(G)$ is a quotient group of $G / L(G)$ by [2, Section 25], $r \leq s$ and $\alpha_{i} \leq \beta_{i}$ for all $1 \leq i \leq r$.

By the above notation, we prove the following corollary:
Corollary 3.3. [18, Corollary 1] Let G be a finite non-abelian p-group. Then Aut ${ }^{L}(G)=\operatorname{Inn}(G)$ if and only if $G^{\prime} \leq L(G), L(G)$ is cyclic and either $L(G)=$ $Z(G)$ or $d(G / L(G))=d(G / Z(G)), \alpha_{i}=\gamma_{1}$ for $1 \leq i \leq k$ and $\alpha_{i}=\beta_{i}$ for $k+1 \leq i \leq r$, where k is the largest integer such that $\beta_{k}>\gamma_{1}$.

Proof. First assume that $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$. Hence by Theorem 3.2, $G^{\prime} \leq$ $L(G)$ and $L(G)$ is cyclic. If $\exp (G / L(G)) \leq \exp (L(G))$, then

$$
G / Z(G) \cong \operatorname{Aut}^{L}(G) \cong \operatorname{Hom}(G / L(G), L(G)) \cong G / L(G)
$$

because $L(G)$ is cyclic and by [12, Proposition 1]. Therefore $L(G)=Z(G)$. Next, let $\exp (G / L(G))>\exp (L(G))$ and k is the largest integer such that $\beta_{k}>\gamma_{1}$. Since $L(G)$ and $G / L(G)$ are abelian,

$$
d(G / Z(G))=d(\operatorname{Hom}(G / L(G), L(G)))=d(G / L(G)) d(L(G))=d(G / L(G))
$$

Now we have $\operatorname{Hom}(G / L(G), L(G)) \cong C_{p^{\gamma_{1}}} \times C_{p^{\gamma_{1}}} \times \cdots \times C_{p^{\gamma_{1}}} \times C_{p^{\beta_{k+1}}} \times \cdots \times C_{p^{\beta_{s}}}$ and $\operatorname{Hom}(G / L(G), L(G)) \cong G / Z(G)=C_{p^{\alpha_{1}}} \times C_{p^{\alpha_{2}}} \times \cdots \times C_{p^{\alpha_{r}}}$. Hence $\alpha_{1}=$ $\alpha_{2}=\cdots=\alpha_{k}=\gamma_{1}$ and $\alpha_{i}=\beta_{i}$ for $k+1 \leq i \leq r$, as required.

Conversely if $L(G)=Z(G)$, then $\exp (G / Z(G))=\exp \left(G^{\prime}\right) \mid \exp (Z(G))$, since $G^{\prime} \leq L(G)$ and by [13, Lemma 0.4]. Now

$$
\operatorname{Hom}(G / L(G), L(G))=\operatorname{Hom}(G / Z(G), Z(G)) \cong G / Z(G)
$$

because $Z(G)$ is cyclic and so Aut $^{L}(G)=\operatorname{Inn}(G)$. Next assume that $L(G)<$ $Z(G), s=d(G / L(G))=d(G / Z(G))=r, \alpha_{i}=\gamma_{1}$ for $1 \leq i \leq k$ and $\alpha_{i}=\beta_{i}$ for $k+1 \leq i \leq r$, where k is the largest integer such that $\beta_{k}>\gamma_{1}$. We claim that $Z(G)=L(G) G^{p^{\gamma_{1}}}$. Since $\exp (G / Z(G))=\exp (L(G))$, we have $L(G) \leq$ $L(G) G^{p^{\gamma_{1}}} \leq Z(G)$. It follows that $G / Z(G)$ is a quotient group of $G / L(G) G^{p^{\gamma_{1}}}$. Now let $G / L(G) G^{p^{\gamma_{1}}}=C_{p^{\gamma_{1}}} \times C_{p^{\delta_{2}}} \times \cdots \times C_{p^{\delta_{r}}}$, where $\delta_{1}=\gamma_{1} \geq \delta_{2} \geq \cdots \geq$ $\delta_{r} \geq 1$, since $d(G / L(G))=d\left(G / L(G) G^{p^{\gamma_{1}}}\right)$ and $\exp \left(G / L(G) G^{p^{\gamma_{1}}}\right)=p^{\gamma_{1}}$. Therefore $\gamma_{1}=\alpha_{i} \leq \delta_{i} \leq \gamma_{1}$ for $1 \leq i \leq k$, whence we have $\delta_{i}=\gamma_{1}=\alpha_{i}$ for $1 \leq i \leq k$. As $\beta_{i}=\alpha_{i} \leq \delta_{i} \leq \beta_{i}$ for $k+1 \leq i \leq r$, it follows that $\delta_{i}=\alpha_{i}=\beta_{i}$ for $k+1 \leq i \leq r$. Hence $G / Z(G)=G / L(G) G^{p^{\gamma_{1}}}$ and consequently $Z(G)=L(G) G^{p^{\gamma_{1}}}$. Therefore by Theorem 3.2, Aut ${ }^{L}(G)=\operatorname{Inn}(G)$. This completes the proof.

As an application of Theorem 3.2, we get another proof of the main result of [15].

Theorem 3.4. [15, Theorem 3.2] Let G be a non-abelian autonilpotent finite p-group of class 2. Then $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$ if and only if $L(G)=Z(G)$ and $L(G)$ is cyclic.

Proof. Suppose that $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$. Hence $L(G)$ is cyclic and $Z(G)=$ $L(G) G^{p^{n}}$, where $\exp (L(G))=p^{n}$. Now by [15, Proposition 2.13], $\exp (G / L(G))$ divides $\exp (L(G))$ and so $Z(G)=L(G) G^{p^{n}}=L(G)$. Conversely, assume that $L(G)=Z(G)$ and $L(G)$ is cyclic. Since G be a non-abelian autonilpotent p group of class 2, Aut ${ }^{L}(G)=\operatorname{Aut}(G)$, by [15, Lemma 2.11]. Therefore $\operatorname{Inn}(G) \leq$ Aut ${ }^{L}(G), G^{\prime} \leq L(G)$ and $G / L(G)$ is abelian. Obviously, $Z(G)=L(G)=$ $L(G) G^{p^{n}}$, where $\exp (L(G))=p^{n}$, and so $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$, by Theorem 3.2, as required.

Corollary 3.5. Let G be an extraspecial p-group.
(i) If $p>2$, then $L(G)$ and $\operatorname{Aut}^{L}(G)$ is trivial.
(ii) If $p=2$, then $L(G) \cong C_{2}$ and $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$.

Proof. Let G be an extraspecial p-group. First assume that $p>2$. By [10, Theorem 3], $L(G)$ is trivial and so Aut ${ }^{L}(G)=1$.
To prove (ii), since $\left|G^{\prime}\right|=2$, and G^{\prime} is a characteristic subgroup of G, we have $G^{\prime} \leq L(G) \leq Z(G)$. Thus $G^{\prime}=L(G)=Z(G)=\Phi(G)$ is cyclic of order 2 . Now by Theorem 3.2, $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$.

Let G be a finite non-abelian p-group such that $G / L(G)$ is abelian. Then G is of class 2 and $\mathrm{Aut}^{G^{\prime}}(G) \leq \mathrm{Aut}^{L}(G)$. Let $G / G^{\prime}=C_{p^{a_{1}}} \times C_{p^{a_{2}}} \times \cdots \times C_{p^{a_{k}}}$, where $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 1$. Also let $L(G)=C_{p^{b_{1}}} \times C_{p^{b_{2}}} \times \cdots \times C_{p^{b_{l}}}$, where $b_{1} \geq b_{2} \geq \cdots \geq b_{l} \geq 1$ and $G^{\prime}=C_{p^{e_{1}}} \times C_{p^{e_{2}}} \times \cdots \times C_{p^{e_{n}}}$, where $e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 1$. Since $G^{\prime} \leq L(G)$, by [2, Section 25] we have $n \leq l$ and $e_{j} \leq b_{j}$ for all $1 \leq j \leq n$. By the above notation, we prove the following theorem:

Theorem 3.6. Let G be a finite non-abelian p-group. Then $\operatorname{Aut}^{L}(G)=$ Aut ${ }^{G^{\prime}}(G)$ if and only if $G^{\prime}=L(G)$ or $G^{\prime}<L(G), d\left(G^{\prime}\right)=d(L(G))$ and $a_{1}=e_{t}$, where t is the largest integer between 1 and n such that $b_{t}>e_{t}$.

Proof. Suppose that $\operatorname{Aut}^{L}(G)=\operatorname{Aut}^{G^{\prime}}(G)$ and $G^{\prime} \neq L(G)$. By Theorem 2.5 and Lemma 2.3, we have $\left|\operatorname{Hom}\left(G / G^{\prime}, L(G)\right)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, G^{\prime}\right)\right|$. First, we claim that $d\left(G^{\prime}\right)=d(L(G))$. Suppose, for a contradiction, that $d\left(G^{\prime}\right)=n<$ $l=d(L(G))$. Since $b_{j} \geq e_{j}$ for all j such that $1 \leq j \leq n$, by Lemma 2.1,

$$
\begin{aligned}
& \left|\operatorname{Aut}^{G^{\prime}}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, G^{\prime}\right)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, C_{p^{e_{1}}} \times C_{p^{e_{2}}} \times \cdots \times C_{p^{e_{n}}}\right)\right| \\
& \leq\left|\operatorname{Hom}\left(G / G^{\prime}, C_{p^{b_{1}}} \times C_{p^{b_{2}}} \times \cdots \times C_{p^{b_{n}}}\right)\right|<\left|\operatorname{Hom}\left(G / G^{\prime}, C_{p^{b_{1}}} \times C_{p^{b_{2}}} \times \cdots \times C_{p^{b_{n}}}\right)\right| \\
& \times\left|\operatorname{Hom}\left(G / G^{\prime}, C_{p^{b_{n+1}}} \times \cdots \times C_{p^{b_{l}}}\right)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, C_{p^{b_{1}}} \times C_{p^{b_{2}}} \times \cdots \times C_{p^{b_{l}}}\right)\right| \\
& =\left|\operatorname{Hom}\left(G / G^{\prime}, L(G)\right)\right|=\left|\operatorname{Aut}^{L}(G)\right|,
\end{aligned}
$$

which is a contradiction. So $n=l$, as required. Next, since $\left|\operatorname{Aut}^{L}(G)\right|=$ \mid Aut $^{G^{\prime}}(G) \mid$, we have

$$
\prod_{1 \leq i \leq k, 1 \leq j \leq l} p^{\min \left\{a_{i}, b_{j}\right\}}=\prod_{1 \leq i \leq k, 1 \leq j \leq l} p^{\min \left\{a_{i}, e_{j}\right\}}
$$

Since $b_{j} \geq e_{j}$ for all j such that $1 \leq j \leq l$, we have $\min \left\{a_{i}, b_{j}\right\} \geq \min \left\{a_{i}, e_{j}\right\}$, where $1 \leq i \leq k, 1 \leq j \leq l$. Thus $\min \left\{a_{i}, b_{j}\right\}=\min \left\{a_{i}, e_{j}\right\}$, for all $1 \leq i \leq$ $k, 1 \leq j \leq l$. Next, since $G^{\prime}<L(G)$, there exists some $1 \leq j \leq l$ such that $e_{j}<b_{j}$. Let t be the largest integer between 1 and n such that $e_{t}<b_{t}$. We show that $a_{1} \leq e_{t}$. Suppose, on the contrary, that $a_{1}>e_{t}$. Then by the above equality, we must have $\min \left\{a_{1}, b_{t}\right\}=\min \left\{a_{1}, e_{t}\right\}=e_{t}$, which is impossible. Hence $a_{1} \leq e_{t}$. Let $\exp (G / Z(G))=p^{f}$, where $f \in \mathbb{N}$. Since $\operatorname{cl}(G)=2$, by [13, Lemma 0.4], $f=e_{1}$. But $a_{1} \leq e_{t} \leq e_{t-1} \leq \cdots \leq e_{1}=f \leq a_{1}$. Whence $a_{1}=e_{t}$.

Conversely, if $G^{\prime}=L(G)$, then $\operatorname{Aut}^{G^{\prime}}(G)=\operatorname{Aut}^{L}(G)$. Assume that $G^{\prime}<$ $L(G), d\left(G^{\prime}\right)=n=d(L(G))=l$ and $a_{1}=e_{t}$, where t is the largest integer between 1 and n such that $b_{t}>e_{t}$. Now by Lemma 2.3,

$$
\left|\operatorname{Aut}^{G^{\prime}}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, G^{\prime}\right)\right|=\prod_{1 \leq i \leq k, 1 \leq j \leq l} p^{\min \left\{a_{i}, e_{j}\right\}}
$$

and by Theorem 2.5,

$$
\left|\operatorname{Aut}^{L}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, L(G)\right)\right|=\prod_{1 \leq i \leq k, 1 \leq j \leq l} p^{\min \left\{a_{i}, b_{j}\right\}}
$$

Since $a_{1}=e_{t}$, we have $1 \leq a_{k} \leq \cdots \leq a_{2} \leq a_{1}=e_{t} \leq e_{t-1} \leq \cdots \leq e_{2} \leq e_{1}$. Thus $b_{j} \geq e_{j} \geq a_{i}$ for all $1 \leq i \leq k$ and $1 \leq j \leq t$, which shows that $\min \left\{a_{i}, e_{j}\right\}=a_{i}=\min \left\{a_{i}, b_{j}\right\}$ for $1 \leq i \leq k$ and $1 \leq j \leq t$. Since $e_{j}=b_{j}$ for all $j \geq t+1$, we have $\min \left\{a_{i}, e_{j}\right\}=\min \left\{a_{i}, b_{j}\right\}$ for all $1 \leq i \leq k$ and $t+1 \leq j \leq l$. Thus $\min \left\{a_{i}, e_{j}\right\}=\min \left\{a_{i}, b_{j}\right\}$ for all $1 \leq i \leq k$ and $1 \leq j \leq l$. Therefore $\left|\operatorname{Aut}^{G^{\prime}}(G)\right|=\left|\operatorname{Aut}^{L}(G)\right|$. Since $G^{\prime}<L(G)$ we have Aut ${ }^{G^{\prime}}(G)=\operatorname{Aut}^{L}(G)$, which completes the proof.

In [11], Meng and Guo proved that for a finite group G, if C_{2} is not a direct factor of G, then $L(G) \leq \Phi(G)$. We end this section by characterizing the finite non-abelian p-groups G with cyclic Frattini subgroup for which $\operatorname{Aut}^{L}(G)=$ Aut $^{\Phi}(G)$.

First, we give some basic results about the finite non-abelian p-groups G with cyclic Frattini subgroup.

Let $n>1$. Following [1], we denote by $D_{2^{n+3}}^{+}$and $Q_{2^{n+3}}^{+}$the 2 -groups of order 2^{n+3} defined by the following presentations.

$$
D_{2^{n+3}}^{+}=\left\langle a, b, c \mid a^{2^{n+1}}=b^{2}=c^{2}=1, a^{b}=a^{-1+2^{n}}, a^{c}=a^{1+2^{n}},[b, c]=1\right\rangle
$$

$Q_{2^{n+3}}^{+}=\left\langle a, b, c \mid a^{2^{n+1}}=b^{2}=1, a^{b}=a^{-1+2^{n}}, a^{c}=a^{1+2^{n}}, a^{2^{n}}=c^{2},[b, c]=1\right\rangle$.
Note that if G is either $D_{2^{n+3}}^{+}$or $Q_{2^{n+3}}^{+}$, then $\operatorname{cl}(G)=n+1$.
In [1], Berger, Kovács and Newman proved the following result.
Theorem 3.7. [1, Theorem 2] If G is a finite p-group with $Z(\Phi(G))$ cyclic, then

$$
G=E \times\left(G_{0} * G_{1} * \cdots * G_{s}\right),
$$

where E is an elementary abelian, G_{1}, \ldots, G_{s} are non-abelian of order p^{3}, of exponent p for p odd and dihedral for $p=2$, while $G_{0}>1$ if $E>1,\left|G_{0}\right|>2$ if $s>0$, and G_{0} is one of the following types: cyclic, non-abelian with a cyclic maximal subgroup, $D_{2^{n+2}} * \mathbb{Z}_{4}, S_{2^{n+2}} * \mathbb{Z}_{4}, D_{2^{n+3}}^{+}, Q_{2^{n+3}}^{+}, D_{2^{n+3}}^{+} * \mathbb{Z}_{4}$, all with $n>1$. Conversely, every such group has cyclic Frattini subgroup.

Theorem 3.8. [20, Theorem 2.3] Let G be a finite non-abelian p-group with cyclic Frattini subgroup $\Phi(G)$.
(i) If $p>2$, or $p=2$ and $\operatorname{cl}(G)=2$, then $\Phi(G) \leq Z(G)$.
(ii) If $\operatorname{cl}(G)>2$, then $G^{\prime}=\Phi(G)$.

Lemma 3.9. [20, Lemma 2.4] Let G be a finite group with $\Phi(G) \leq Z(G)$. Then there is a bijection from $\operatorname{Hom}\left(G / G^{\prime}, \Phi(G)\right)$ onto $\mathrm{Aut}^{\Phi}(G)$ associating to every homomorphism $f: G \rightarrow \Phi(G)$ the automorphism $x \mapsto x f(x)$ of G. In particular, if G is a p-group and $\exp (\Phi(G))=p$, then $\operatorname{Aut}^{\Phi}(G) \cong \operatorname{Hom}\left(G / G^{\prime}, \Phi(G)\right)$.

In the following theorem, we will make use Theorem 3.7, which is the structural theorem for p-groups with cyclic Frattini subgroup.

Theorem 3.10. Let G be a finite non-abelian p-group with cyclic Frattini subgroup. Then Aut ${ }^{L}(G)=\operatorname{Aut}^{\Phi}(G)$ if and only if G is one of the following types: $C_{2}^{m} \times D_{8}^{*(s+1)}$ or $C_{2}^{m} \times\left(D_{8}^{* s} * Q_{8}\right)$, where $s, m \geq 0$.
Proof. Let Aut ${ }^{L}(G)=$ Aut $^{\Phi}(G)$. Hence Aut ${ }^{\Phi}(G)$ is abelian, G is of class 2 and by Theorem 3.8, $\Phi(G) \leq Z(G)$. It follows that $\exp \left(G^{\prime}\right)=\exp (G / Z(G))=p$ and so $\left|G^{\prime}\right|=p$. Assume that $\left|\Phi(G): G^{\prime}\right|=p^{a}$. Then $\Phi(G) \cong C_{p^{a+1}}$ and we observe that $\exp \left(G / G^{\prime}\right) \leq p^{a+1}=|\Phi(G)|$. Together with Lemma 3.9, we have $\left|\operatorname{Aut}^{\Phi}(G)\right|=|\operatorname{Hom}(G, \Phi(G))|=|G| / p$. Next, we note that $G^{\prime} \cap L(G) \neq$ 1; otherwise, $G^{\prime} \cap L(G)=1$ and $G^{\prime} \times L(G)$ would be a subgroup of $\Phi(G)$. Hence either $G^{\prime}=1$ or $L(G)=1$, a contradiction. Whence $G^{\prime} \leq L(G)$. Now we are able to show that $G^{\prime}=L(G) \cong C_{p}$. To do this, first assume that $L(G) \neq \Phi(G)$. By similar argument that was applied for Theorem 3.6, we have $\exp \left(G / G^{\prime}\right) \leq \exp (L(G))$, which implies that $\exp (G / L(G)) \leq \exp \left(G / G^{\prime}\right) \leq$ $\exp (L(G))=|L(G)|$. If $L(G)=\Phi(G)$, then $\exp (G / L(G))=\exp (G / \Phi(G)) \leq$ $\exp (L(G))=|L(G)|$. Thus \mid Aut $^{L}(G)|=|G / L(G)|=|$ Aut $^{\Phi}(G)\left|=\left|G / G^{\prime}\right|\right.$, by [12, Proposition 1] and so $G^{\prime}=L(G) \cong C_{p}$. Now, we will make use of the notation of Theorem 3.7.

Since $\operatorname{cl}(G)=2$, by Theorem 3.7 and [5, Theorems 5.4.3 and 5.4.4], G_{0} is one of the groups $M_{p}(n, 1)$, where $n \geq 3$, if $p=2 ; D_{8}$ or Q_{8}.
We claim that $G^{\prime}=G_{0}^{\prime}$ and $\Phi(G)=\Phi\left(G_{0}\right)$. To see this, since $G_{0}^{\prime} \bigcap G_{i}^{\prime} \neq 1$ for $1 \leq i \leq s$ and $\left|G_{i}^{\prime}\right|=p$, we have $G_{i}^{\prime} \leq G_{0}^{\prime}$ and so $G^{\prime}=G_{0}^{\prime}$. Also $\Phi(G)=$ $G^{\prime} G^{p}=G_{0}^{\prime} E^{p} G_{0}^{p} G_{1}^{p} \cdots G_{s}^{p}=G_{0}^{\prime} G_{0}^{p}=\Phi\left(G_{0}\right)$. To continue the proof, we may consider two cases:
Case I. $E=1$.
Let $G=G_{0} * T$, where T be one of the groups $M_{p}(1,1,1)^{* s}$, while $p>2$ or $D_{8}^{* s}$, where all $s \geq 0$. Note that if $s=0$, then $G=G_{0}$ and $Z(G)=$ $Z\left(G_{0}\right)=\Phi\left(G_{0}\right)=\Phi(G)$; otherwise, since $1 \neq G_{0} \bigcap T=Z(T) \leq Z\left(G_{0}\right)$, then $Z(G)=Z\left(G_{0}\right)$, because $|Z(T)|=p$, which implies that $\Phi(G)=\Phi\left(G_{0}\right)=$ $Z\left(G_{0}\right)=Z(G)$. We claim that G is an extraspecial p-group. To see this, since $G^{\prime}=L(G) \cong C_{p}$, by Theorem 3.2, $\operatorname{Aut}^{\Phi}(G)=\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$. This shows that G is an extraspecial p-group, by Theorem 2.2. If $p>2$, then by Corollary $3.5, L(G)=1$, which is impossible. Whence $p=2$. If $G_{0} \cong M_{2}(n, 1), n \geq 3$, then by [5, Theorem 5.4.3], $Z(G)=\Phi(G)$ is of order 2^{n-1}. This yields that $n=2$, since $|Z(G)|=2$, a contradiction. Therefore G_{0} is isomorphic either to D_{8} or Q_{8}, and G be one of the groups: $D_{8}^{*(s+1)}$ or $Q_{8} * D_{8}^{* s}$, for some $s \geq 0$.

Case II. $E \neq 1$.
In this case $G_{0}>1$ and $G=E \times\left(G_{0} * T\right)$, where T be one of the groups lying in Case I.

We claim that Aut ${ }^{\Phi\left(G_{0} * T\right)}\left(G_{0} * T\right)=$ Aut $^{L\left(G_{0} * T\right)}\left(G_{0} * T\right)$. Choose a nontrivial element σ of Aut ${ }^{\Phi\left(G_{0} * T\right)}\left(G_{0} * T\right)$. Then the map $\bar{\sigma}$ defined by $(e f)^{\bar{\sigma}}=$ $e f^{\sigma}$, for all $e \in E, f \in G_{0} * T$ denotes an automorphism of $\operatorname{Aut}^{\Phi}(G)=\operatorname{Aut}^{L}(G)$. Since $G^{\prime} \cap L\left(G_{0} * T\right) \neq 1$, then $L(G) \leq L\left(G_{0} * T\right)$ and so σ is in Aut ${ }^{L\left(G_{0} * T\right)}\left(G_{0} *\right.$ $T)$. This shows that Aut ${ }^{\Phi\left(G_{0} * T\right)}\left(G_{0} * T\right)=$ Aut $^{L\left(G_{0} * T\right)}\left(G_{0} * T\right)$, as required. Next, by a similar argument as mentioned for the previous case, G_{0} be one of the groups: D_{8} or Q_{8}. Therefore G has one of the following types: $C_{2}^{m} \times D_{8}^{*(s+1)}$ or $C_{2}^{m} \times\left(D_{8}^{* s} * Q_{8}\right)$, where $s \geq 0, m>0$.

Conversely, assume that G be of the groups in Theorem 3.10. Hence $G^{\prime}=$ $L(G) \cong C_{2}$. Now the proof is complete, since $\left|\operatorname{Aut}^{L}(G)\right|=\left|\operatorname{Aut}^{\Phi}(G)\right|=$ $|G| / 2$.
4. Classify all finite p-Groups G of order $p^{n}(3 \leq n \leq 5)$, such that

$$
\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)
$$

Let G be a non-abelian group of order p^{3}. Then by Corollary 3.5, Aut ${ }^{L}(G)=$ $\operatorname{Inn}(G)$ if and only if $p=2$. In the following corollaries, we use Theorems 4.7 and 5.1 of [11] and classify all finite p-groups G of order $p^{n}(4 \leq n \leq 5)$, such that $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$. First we recall the following concept, which was introduced by Hall in [6].

Definition 4.1. Two finite groups G and H are said to be isoclinic if there exist isomorphisms $\phi: G / Z(G) \rightarrow H / Z(H)$ and $\theta: G^{\prime} \rightarrow H^{\prime}$ such that, if $\left(x_{1} Z(G)\right)^{\phi}=y_{1} Z(H)$ and $\left(x_{2} Z(G)\right)^{\phi}=y_{2} Z(H)$, then $\left[x_{1}, x_{2}\right]^{\theta}=\left[y_{1}, y_{2}\right]$. Notice that isoclinism is an equivalence relation among finite groups and the equivalence classes are called isoclinism families.

Corollary 4.2. Let G be a non-abelian group of order p^{4}. Then $\operatorname{Aut}^{L}(G)=$ $\operatorname{Inn}(G)$ if and only if $p=2$ and G is one of the following types: $M_{2}(3,1)$ or $M_{2}(2,1,1)$.
Proof. Assume that $|G|=p^{4}$ and Aut $^{L}(G)=\operatorname{Inn}(G)$. We claim that $|Z(G)|=$ p^{2}. Suppose for a contradiction, that $|Z(G)|=p$. We observe that $G^{\prime} \leq$ $Z(G) \cong C_{p}$, by Theorem 3.2 and so G is an extraspecial p-group, a contradiction since the order of G is not of the form $p^{2 n+1}$, for some natural number n. Therefore $G / Z(G) \cong C_{p}^{2}$, and hence $\left|G^{\prime}\right|=p$. We consider two cases:
Case I. p an odd prime. It is straightforward to see that the map $\sigma: G \rightarrow G$ by $x^{\sigma}=x^{1+p}$, is an automorphism of G. Hence for any element x of $L(G)$, $x=x^{\sigma}=x^{1+p}$, and so $x^{p}=1$. Thus $\exp (L(G))=p$ and so $G^{\prime}=L(G) \cong C_{p}$, by Theorem 3.2. If $G / L(G) \cong C_{p^{3}}$, then by [3, Theorem 2.2], G is cyclic, a contradiction. Next, we assume that $G / L(G) \cong C_{p^{2}} \times C_{p}$. Then G is an abelian group by [11, Theorem 5.1], which is impossible. Finally, if $G / L(G) \cong C_{p}^{3}$, then $L(G)=\Phi(G)$ and so $\operatorname{Aut}^{\Phi}(G)=\operatorname{Inn}(G)$. Therefore by Theorem 2.2, G is an extraspecial p-group, a contradiction.

Case II. $p=2$. Since $\left|G^{\prime}\right|=2$, and G^{\prime} be a characteristic subgroup of G, we have $G^{\prime} \leq L(G) \leq Z(G)$. Thus $|L(G)|=2$ or 4. If $|L(G)|=4$, then $L(G)=Z(G)$ and $G / L(G) \cong C_{2}^{2}$. Hence by [11, Theorems 5.1 and 4.7], $G \cong M_{2}(2,2)$, and $L(G) \cong C_{2}^{2}$, which is a contradiction by Theorem 3.2. Next we assume that $|L(G)|=2$. So $G^{\prime}=L(G)$ and $|G / L(G)|=8$. By a similar argument, G is isomorphic to one of the following groups: $M_{2}(3,1)$ or $M_{2}(2,1,1)$. The converse follows at once from Theorem 3.2.

Corollary 4.3. Let G be a non-abelian group of order p^{5}. Then $\operatorname{Aut}^{L}(G)=$ $\operatorname{Inn}(G)$ if and only if $p=2$ and G is one of the following types: $M_{2}(3,2)$, $M_{2}(4,1), M_{2}(2,2,1), D_{8}^{* 2}$ or $D_{8} * Q_{8}$.
Proof. Let G be a finite group such that $|G|=p^{5}$ and $\operatorname{Aut}^{L}(G)=\operatorname{Inn}(G)$. We consider two cases:

Case I. $p>2$. These groups lying in the isoclinism families (5), (4) or (2) of $[8,4.5]$ and we show that $\operatorname{Aut}^{L}(G) \neq \operatorname{Inn}(G)$.
First, let G denote one of the groups in the isoclinism family (5). Hence $|Z(G)|=p$ and $G^{\prime}=Z(G)=\Phi(G) \cong C_{p}$, by Theorem 3.2. So G is an extraspecial p-group and by Corollary $3.5,|L(G)|=1$, a contradiction.
Next, let G be one of the groups in the isoclinism family (4). Then $G^{\prime} \cong C_{p}^{2}$, which is a contradiction, since G^{\prime} is cyclic.

Finally, let G denote one of the groups in the isoclinism family (2). Then $G / Z(G) \cong C_{p}^{2}$ and so $d(G / L(G))>1$. We observe that $G^{\prime}=L(G) \cong C_{p}$ and $Z(G)=\Phi(G)$, by using Theorems 2.2, 3.2, [3, Theorem 2.2] and [11, Theorem 5.1]. So $d(G)=2$ and by [16], G is a minimal non-abelian p-group. If $G / L(G) \cong C_{p^{3}} \times C_{p}$, then G is an abelian group, by [11, Theorem 5.1], a contradiction. If $G / L(G) \cong C_{p^{2}}^{2}$, then by $[16], G \cong M_{p}(3,2)$ or $G \cong M_{p}(2,2,1)$. Thus $L(G)=1$, by [11, Theorem 4.7], a contradiction. Finally, assume that $G / L(G) \cong C_{p^{2}} \times C_{p}^{2}$ or $G / L(G) \cong C_{p}^{4}$. In this cases, Aut ${ }^{L}(G) \neq \operatorname{Inn}(G)$, by Theorem 2.5.
Case II. $p=2$. We can see that $|L(G)|=2,4$, by [3, Theorem 2.2] and [11, Theorem 5.1]. First, we assume that $|L(G)|=4$. Since G is a non-cyclic group, by [3, Theorem 2.2], $d(G / L(G))>1$. It follows that $G / L(G)$ is one of the groups C_{2}^{3} or $C_{4} \times C_{2}$. Now in the first case, $L(G)=\Phi(G)$ and so G is an extraspecial 2-group by Theorem 2.2. Hence $G^{\prime}=L(G) \cong C_{2}$, a contradiction. Therefore $G / L(G) \cong C_{4} \times C_{2}$ and by [11, Theorems 5.1 and 4.7], G is one of the groups: $M_{2}(2,3)$ or $M_{2}(3,1,1)$, and $L(G) \cong C_{2}^{2}$, a contradiction by Theorem 3.2. Now we may suppose that $|L(G)|=2$. So $G^{\prime}=L(G) \cong C_{2}$. We discuss the following cases.
If $G / L(G) \cong C_{2}^{4}$, then $L(G)=\Phi(G)$ and so Aut ${ }^{\Phi}(G)=\operatorname{Inn}(G)$. Therefore by Theorem 2.2, G is an extraspecial 2-group. Thus G is one of the groups $D_{8}^{* 2}$ or $D_{8} * Q_{8}$, by [21]. Next, suppose that $G / L(G) \cong C_{4} \times C_{2}^{2}$. Hence $G / L(G)=\langle\bar{a}, \bar{b}, \bar{c}\rangle$, where $\bar{a}=a L(G), \bar{b}=b L(G), \bar{c}=c L(G)$ and $o(\bar{a})=4$, $o(\bar{b})=o(\bar{c})=2$. Therefore $G=\langle a, b, c, L(G)\rangle=\langle a, b, c\rangle$, by [11, Corollary 3.7]. Since $\left\langle a^{2}\right\rangle \times G^{\prime} \leq Z(G)$, we have either $Z(G) \cong C_{4} \times C_{2}$ or C_{2}^{2}. If $Z(G) \cong$ $C_{4} \times C_{2}$, then Aut ${ }^{L}(G) \neq \operatorname{Inn}(G)$, by Theorem 2.5. Therefore $Z(G) \cong C_{2}^{2}$. Now by using GAP [4], we find that there are no such groups. Next, if $G / L(G) \cong$ $C_{8} \times C_{2}$, then $G \cong M_{2}(4,1)$, by [11, Theorem 5.1]. Finally, suppose that $G / L(G) \cong C_{4}^{2}$. Then $d(G)=2$, by [11, Corollary 3.7] and $G^{\prime}=L(G) \cong C_{2}$. Hence by [16], G is a minimal non-abelian 2-group. Thus G is isomorphic to the group $M_{2}(3,2)$ or $M_{2}(2,2,1)$. The converse follows at once from Theorem 3.2.

Acknowledgments

The author is grateful to the referees for their valuable suggestions. The paper was revised according to these comments. This research was in part supported by a grant from Payame Noor University.

References

[^0]3. M. Chaboksavar, M. Farrokhi Derakhshandeh Ghouchan, F. Saeedi, Finite Groups with a Given Absolute Central Factor Group, Arch. Math. (Basel), 102, (2014), 401-409.
4. The GAP Group, GAP-Groups, Algorithms and Programing, Version 4.4; 2005, (http://www.gap-system.org).
5. D. J. Gorenstein, Finite Group, Harper and Row, New York, 1968.
6. P. Hall, The Classification of Prime Power Groups, J. Reine Angew. Math., 182, (1940), 130-141.
7. P. V. Hegarty, The Absolute Center of a Group, J. Algebra, 169, (1994), 929-935.
8. R. James, The Groups of Order p^{6} (p an Odd Prime), Math. Comp., 34, (1980), 613-637.
9. Z. Kaboutari Farimani, On the Absolute Center Subgroup and Absolute Central Automorphisms of a Group, Ph.D Thesis, Pure Mathematics, University of Birjand, 2016, 83 pages.
10. Z. Kaboutari Farimani, M. M. Nasrabadi, Finite p-Groups in which each Absolute Central Automorphism is Elementary Abelian, Mathematika, 32(2), (2016), 87-91.
11. H. Meng, X. Guo, The Absolute Center of Finite Groups, J. Group Theory, 18, (2015), 887-904.
12. M. R. R. Moghaddam, H. Safa, Some Properties of Autocentral Automorphisms of a Group, Ricerche Mat., 59, (2010), 257-264.
13. M. Morigi, On the Minimal Number of Generators of Finite Non-Abelian p-Groups Having an Abelian Automorphism Group, Comm. Algebra, 23, (1995), 2045-2065.
14. O. Müller, On p-Automorphisms of Finite p-Groups, Arch. Math., 32, (1979), 533-538.
15. M. M. Nasrabadi, Z. Kaboutari Farimani, Absolute Central Automorphisms that Are Inner, Indag. Math., 26, (2015), 137-141.
16. L. Redei, Endliche p-Gruppen, Akademiai Kiado, Budapest, 1989.
17. M. Shabani-Attar, On Equality of Certain Automorphism Groups of Finite Groups, Comm. Algebra, 45(1), (2017), 437-442.
18. S. Singh, D. Gumber, Finite p-Groups whose Absolute Central Automorphisms are Inner, Math Commun., 20, (2015), 125-130.
19. R. Soleimani, On Some p-Subgroups of Automorphism Group of a Finite p-Group, Vietnam J. Math., 36(1), (2008), 63-69.
20. R. Soleimani, Automorphisms of a Finite p-Group with Cyclic Frattini Subgroup, Int. J. Group Theory, $\mathbf{7}(4)$, (2018), 9-16.
21. D. L. Winter, The Automorphism Group of an Extraspecial p-Group, Rocky Mountain J. Math., 2(2), (1972), 159-168.

[^0]: 1. T. R. Berger, L. G. Kovács, M. F. Newman, Groups of Prime Power Order with Cyclic Frattini Subgroup, Nederl. Acad. Westensch. Indag. Math., 83(1), (1980), 13-18.
 2. R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Dover Publications, New York, 1956.
